
Journal of Computational Physics163,51–67 (2000)

doi:10.1006/jcph.2000.6553, available online at http://www.idealibrary.com on

A Remark on Computing Distance Functions

Giovanni Russo∗ and Peter Smereka†
∗Department of Mathematics, University of L’Aquila, L’Aquila, Italy; and†Department of Mathematics,

University of Michigan, Ann Arbor, Michigan 48109
E-mail: russo@univaq.it

Received October 25, 1999; revised May 31, 2000

We propose a new method for the reconstruction of the signed distance function
in the context of level set methods. The new method is a modification of the algo-
rithm which makes use of the PDE equation for the distance function introduced by
M. Sussman, P. Smereka, and S. Osher (1994,J. Comput. Phys. 119, 146). It is
based mainly on the use of a truly upwind discretization near the interface. Com-
parison with the previous algorithm shows a definite improvement. When used
with a first-order upwind scheme, the method provides first-order accuracy for the
signed distance function in the whole computational domain, and second-order ac-
curacy in the location of the interface. A second-order version of the method is also
presented. c© 2000 Academic Press

1. INTRODUCTION

Level set methods have proven to be useful tools for computing interface evolution. In
this approach the interface,6, is represented as the zero level set of a continuous level set
function,φ, defined in a domainÄ ⊂ IRd; i.e.,

6 = {x ∈ IRd : φ(x) = 0}.

The functionφ is defined everywhere in the domainÄ. The interface6 is updated by
solving a transport equation forφ,

∂φ

∂t
+ v · ∇φ = 0, (1)

wherev is an extension of the interface velocity toÄ.
In many applications the level set function obtained by the solution of Eq. (1) may become

distorted, which means that its gradient may become very large or very small around the
interface. It is therefore useful to replace the level set function with a better behaved function
which has the same zero level set. This process is calledreinitialization [1].

51

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.

52 RUSSO AND SMEREKA

The simplest and most useful choice is to replace the level set function by the signed
distance function. A signed distance function associated to a level set functionφ(x) is
defined by

D(x) = min
y∈6
|x− y| sgn(φ(x)). (2)

Reinitialization with the signed distance function has been used in a number of different
circumstances, for example, Chopp [1] (minimal surfaces), Sussmanet al. [2, 3] (free
boundary problems in two-phase flow), Chenet al. [4] (crystal growth), and Merriman
et al. [5] (motion of multiple junctions). Reinitialization with distance functions has also
been used in the development of fast level set methods by Penget al. [6]. A different fast
method (the fast marching method) has been used by Adalsteinsson and Sethian [7]. They
obtain the distance function as a by-product of the method.

There are several methods for reinitializing the level set function to the signed distance
function. One possibility would be to compute the distance function using a discretized
version of Eq. (2). This approach can be used for very accurate calculations if the loca-
tion of the interface is accurately known. An example of its use is shown in Section 3.
Such technique, however, is not very practical in level set because it requires the accu-
rate evaluation of the position of several interface points. Moreover, the straightforward
algorithm based on the discretization of Eq. (2) would be too expensive, the number of
operations required being proportional toNg × N6 , whereNg is the number of grid points,
and N6 denotes the number of points which discretize the interface6. An efficient im-
plementation of this algorithm for computing the distance function in the framework of
a narrow bandlevel set method has been presented by Adalsteinsson and Sethian [7].
Strain has developed fast methods for computing distance functions using tree methods
(see [8, 9]).

A different approach, introduced in [2], is based on solving the following PDE:

∂φ

∂t
= sgn(φ0)(1− |∇φ|), (3)

φ(x, 0) = φ0(x).

The zero level set ofφ0 represents the location of the interface. When this equation is solved
up to timeT , thenφ(x, T) is the signed distance function for all the points within distance
T from the interface. As pointed out in [2], this is a Hamilton–Jacobi equation, and one
could use upwind methods to compute its unique viscosity solution.

It is possible to rewrite this equation in the form

∂φ

∂t
+ sgn(φ0)n · ∇φ = sgn(φ0), (4)

wheren ≡ ∇φ/|∇φ| is the unit normal to the level sets. In this form the equation appears
as a scalar convection equation. The direction of propagation of the signal is schematically
illustrated in Fig. 1. The continuous arrows represent the normal to the level set,n, while
the dashed arrows represent the direction of propagation of the signal. It is clear from the
figure that no boundary condition must be assigned at the boarder of the computational
domain (the whole square) since the signal is propagating outward. The sign function sgn

COMPUTING DISTANCE FUNCTIONS 53

FIG. 1. Propagation of the signal off the zero level set for Eq. (4). The arrows represent the unit normal to the
level set. The dashed arrows represent the direction of propagation of the signal.

is defined as

sgn(x) =

1 if x > 0
0 if x = 0
−1 if x < 0.

Note that on the zero level set ofφ0, the functionφ is initialized to zero and it must
remain zero. This property is consistent with the above definition of the sign function. In
numerical computation, smoothed versionsS(x) of the sign function will be used. They
should maintain the property thatS(0) = 0.

A similar approach, introduced by Sethian [see 7 and the references therein], is based on
the idea of crossing times. One solves the equation

∂φ

∂t
+ |∇φ| = 0

both forward and backward in time and calculates the time whenφ changes sign at a
particular node. This time is then the signed distance function.

2. THE PROBLEM

In this paper we shall examine the approach suggested in Ref. [2]. Equation (3) can be
discretized by using upwind methods. The first-order 1D version used in [2] is given by

φn+1
i = φn

i −1t S
(
φ0

i

)
G(φ)i , (5)

where

G(φ)i =
{

max(|a+|, |b−|)− 1 if φ0
i > 0

max(|a−|, |b+|)− 1 if φ0
i < 0

(6)

with

a ≡ D−x φi = (φi − φi−1)/1x, (7)

b ≡ D+x φi = (φi+1− φi)/1x, (8)

54 RUSSO AND SMEREKA

FIG. 2. Construction of the distance functionφ(x, t) using the original method given by Eq. (5) with the
initial condition given by (9). Number of iterationsNI = 0, 3, 6, 9, 12. The domain isÄ = [−5, 5] and we take
1t = 0.91x,1x = 0.5.

and, for any real numberh, it is h+ = max(h, 0), h− = min(h, 0). The smoothed sign
functionS is given by

S(φ) = φ√
φ2+1x2

.

This scheme has been successfully used in several contexts; nevertheless it suffers from
drawbacks. In 1D, under certain conditions, the zero of the level set function will tend to
approach to the closest grid node, after several iterations. To illustrate this, we consider the
initial condition

φ0(x) = (x − 0.41x)(x + 6)/2+ 1. (9)

The results of the implementation of the above algorithm are illustrated in Figs. 2 and 3.
This effect was pointed out to the authors by A. Sarti (Private communication).

The explanation of this effect and a simple procedure to overcome this drawback are
illustrated in the next section.

3. THE SUBCELL FIX

We begin by remarking that Eq. (3) is a first-order hyperbolic equation, which can be
written as

∂φ

∂t
+ w∂φ

∂x
= sgnφ0, (10)

where

w = sgn(φ0) sgn

(
∂φ

∂x

)
.

COMPUTING DISTANCE FUNCTIONS 55

FIG. 3. A close up of Fig. 2 showing how the zero level set has moved. Cubic spline interpolation has been
used to reconstructφ(x, t) from its grid values for plotting purposes only. Dashed line: initial level set function
φ0(x).

In Eq. (10), the characteristics propagate outward from the interface, in the normal direction,
with speed 1. The rate of change of the phase function along the characteristics is+1 (in
Äout) and−1 (inÄin). Therefore after a timeT , the value of the phase is the signed distance
function from the interface.

Methods used to solve this equation are usually upwind methods, where the discrete
derivatives are computed by upwind differencing according to the direction of the charac-
teristics. In particular, this means that when differencing across the interface, this property
will be violated. It is clear that the method presented in the introduction has differences
across the interface.

Discretization of the derivatives near the interface is not truly upwind, in the sense that
part of the information is coming from the wrong side of the level set. This is illustrated
in the following example (see Fig. 4). Suppose we wish to updateφi at i = 4. Then the
application of the above algorithm would give

a = φ4− φ3

1x
, b = φ5− φ4

1x
.

In this casea > 0, b > 0, andφ0
4 > 0 and therefore we have from (5) that

φn+1
4 = φn

4 +
∣∣φn

4 − φn
3

∣∣
1x

1t.

Therefore, the value of the level set functionφn+1
4 depends on the valueφn

3 which is on the
other side of the interface. This is inconsistent with upwinding since information should
propagate outward from the interface.

As we shall see, modifying the numerical schemes to ensure that the schemes are
truly upwind across the interface will dramatically reduce the movement of the interface.

56 RUSSO AND SMEREKA

FIG. 4. Example that shows why the original scheme (5)–(8) is not truly upwinding. The dashed line represents
the piecewise linear reconstruction of the original level set functionφ0. Point A represents the intersection of the
latter with thex axis, and the thick line is the approximation of the distance function at point 4.

Moreover, we shall show that the motion of the interface is bounded in time by a constant
that depends on the accuracy of the method. The new upwind scheme is obtained by a
simple correction of the previous scheme. It uses Eqs. (5) and (6) with different expressions
of G(φ)i and of the sign functionS. Near the interface, the functionG is given by

G(φ)i =
∣∣Dup

x φi

∣∣− 1, (11)

where the upwind derivatives, Dup
x , of a functionφ(x) near the interface are given by the

geometrical consideration that the left derivative at point 4 (see Fig. 4) is given byφ4/D4,
whereD4 is the approximation of the distance function computed using the original level
set functionφ0 (the length of the thick segment in Fig. 4). This geometrical construction
leads to the scheme

Dup
x φi =

φi

|Di | if φ0
i φ

0
i−1 < 0

− φi

|Di | if φ0
i φ

0
i+1 < 0,

(12)

whereDi is an approximation of the signed distance function from the interface to thei th
node. The derivation of this formula relies on the fact thatφ is zero at the interface and
the characteristics always point outward from the interface. A possible choice ofDi (see
Fig. 4) is given by

Di = 1x
2φ0

i∣∣φ0
i+1− φ0

i−1

∣∣ . (13)

COMPUTING DISTANCE FUNCTIONS 57

The smoothed sign functionS is given by

S=
{ Di
1x if φ0

i φ
0
i−1 ≤ 0 or φ0

i φ
0
i+1 ≤ 0

sgn
(
φ0

i

)
otherwise.

(14)

Summarizing, we compute the derivatives as usual if we are not within one grid cell from
the interface; otherwise, we compute the derivatives using the information thatφ is zero on
the interface.

If we use (12) and (14) in (5), we obtain the scheme

φn+1
i =

{
φn

i − 1t
1x

(
sgn
(
φ0

i

)∣∣φn
i

∣∣− Di
)

if φ0
i φ

0
i+1 < 0 or φ0

i φ
0
i−1 < 0

φn
i −1t sgn

(
φ0

i

)
G(φ)i otherwise,

(15)

whereG(φ)i is given by Eq. (6). In writing (15) we made use of the fact that sgn(D) =
sgn(φ0).

Remark. Whenever there is a topology change it is conceivable that the denominator in
Eq. (13) becomes very small. In order to overcome this difficulty, a more robust expression
for the signed distance function would be

Di = 1x
φ0

i

1φ0
i

, (16)

where

1φ0
i = max

{∣∣φ0
i+1− φ0

i−1

∣∣/2,
∣∣φ0

i+1− φ0
i

∣∣, ∣∣φ0
i − φ0

i−1

∣∣, ε}, (17)

andε is a small positive number.

Remark. Note that the CFL stability condition for the above scheme is1t < 1x. This
uniform stability condition is obtained by using the smoothed sign function (14). This
function has the property of being zero on the original level set, as required. Furthermore,
a uniform CFL stability condition on the time step requires a smaller value ofS near the
interface in order to compensate for the effect of an effectively smaller local grid size (the
space derivative is computed with a local grid size which is effectively equal to|Di |).
The fact that the smoothed sign function vanishes near the interface does not change the
equilibrium solution for large time.

Remark. A possible variant of this scheme is to assign the value of the signed distance
function Di to φ(xi) and to use it as boundary condition for the upwind scheme. Such
variant would provide essentially the same accuracy.

Here we use the new scheme on the same examples shown in the previous section. In
Figs. 5 and 6 we show the evolution of the distance function in 1D. It is evident that after
an initial transient, the distance function converges to the correct value up to second order
in 1x, and no approach toward the closest node is observed for the zero-level point.

4. 2D RESULTS

In two and three dimensions the problem is more severe, since repeated applications of
the algorithm will cause the interface to loose area and shrink. We shall illustrate this with

58 RUSSO AND SMEREKA

FIG. 5. Construction of the distance functionφ(x, t) using the new method given by Eq. (15) with the
initial condition given by (9). Number of iterationsNI = 0, 3, 6, 9, 12. The domain isÄ = [−5, 5] and we take
1t = 0.91x,1x = 0.5.

the following example. We consider

φ0(x) =
√

x2+ y2− 4. (18)

The zero level set is a circle with radius 4 andφ0(x) is the signed distance function. If
we apply the reinitialization algorithm to this function it should not move. A first-order

FIG. 6. A close up of Fig. 5 showing that the zero level set moves considerably less with the new method.
Cubic spline interpolation has been used to reconstruct the function from its grid values. Dashed line: initial level
set functionφ0(x).

COMPUTING DISTANCE FUNCTIONS 59

implementation of (3) in 2D is given by [2]

φn+1
i, j = φn

i, j −1t S
(
φ0

i, j

)
G(φ)i, j , (19)

where

G(φ)i, j =
{√

max(a2+, b2−)+max(c2+, d2−)− 1 if φ0
i, j > 0√

max(a2−, b2+)+max(c2−, d2+)− 1 if φ0
i, j < 0

(20)

with {
c ≡ D−y φi = (φi, j − φi, j−1)/1x

d ≡ D+y φi = (φi, j+1− φi, j)/1x,
(21)

anda andb are given by 2D versions of the expressions given by (5).The results are shown
in Fig. 7. We observe not only that the circle shrinks but also that there is considerable grid
anisotropy. This effect is reduced if one uses higher order methods (M. Sussman, private
communication). Thus we see that this algorithm produces an error that is proportional to
the number of iterations. In most applications a small number of iterations of reinitialization
procedure are applied each time step. Thus the total number iterations will be large; con-
sequently, the error due to the reinitialization algorithm could in principle be rather large.
Sussman and Fatemi [10] proposed to modify Eq. (5) by imposing the constraint that the
total area must be preserved. Other work [6] shows that there is an additional diffculty when
the initial level set function is not close to a signed distance function. The authors propose

FIG. 7. Construction of the distance function in 2D using the original method as given by Eq. (19) with the
initial condition given by (18). The key feature is that the interface moves considerably. In this figure we have
plotted the zero level set ofφ when the number of iterations isNI = 0, 160, 320, 480, 640, 800. The domain is
Ä = [−5, 5]× [−5, 5] and we take1t = 0.51x,1x = 10/16.

60 RUSSO AND SMEREKA

to solve the problem by suitable modification of the mollified sign function, namely

S= φ√
φ2+ |Dφ|21x2

,

whereDφ is a discretization of∇φ. In this paper we show that a simple modification of
scheme (15) virtually removes both of these difficulties. We shall see that our improvement
of the algorithm has an error bound that isindependent of the number of iterations.

The scheme presented in the previous section can be straightforwardly extended in two
dimensions. The resulting scheme is

φn+1
i, j =

{
φn

i, j − 1t
1x

(
sgn
(
φ0

i, j

)∣∣φn
i, j

∣∣− Di, j
)

if (i, j) ∈ 61x

φn
i, j −1t sgn

(
φ0

i, j

)
G(φ)i, j otherwise,

(22)

where the set61x defines the points which are within one grid point from the level set.
More specifically, we say that(i, j) ∈ 61x if

φ0
i, jφ

0
i−1, j < 0 or φ0

i, jφ
0
i+1, j < 0 or φ0

i, jφ
0
i, j−1 < 0 or φ0

i, jφ
0
i, j+1 < 0.

The quantityDi, j represents the distance of node(i, j) from the interface and can be
computed, for example, by

Di, j =
21xφ0

i, j[(
φ0

i+1, j − φ0
i−1, j

)2+ (φ0
i, j+1− φ0

i, j−1

)2]1/2 , (23)

or by a more robust formula, an analogue to the one used for the one-dimensional scheme.
The quantityG is computed according to formula (20).

In Fig. 8 we show the evolution of the zero level set of a phase function, with the same
initial condition of the example shown in Fig. 7, but satisfying the new evolution equations.

Next, we compare the old and new schemes for the computation of the signed distance
function from an ellipse.

We start with

φ(x, y, 0) = f (x, y)

(√(
x2

A2
+ y2

A2

)
− 1

)
, (24)

where

f (x, y) = ε + (x − x0)
2+ (y− y0)

2,

and the parameters are given byA = 4, B = 2, ε = 0.1, x0 = 3.5, andy0 = 2. This choice
of φ(x, y, 0) means that our initial condition has both small and large gradients near its
zero level set (Fig. 9). In order to check the validity of our new scheme, we compute the
L1 norm of the difference between the level set function and the distance function. More
precisely, we compute

‖φn − D‖1 =
∑
i, j

∣∣φn
i, j − D(xi, j)

∣∣1x2, (25)

COMPUTING DISTANCE FUNCTIONS 61

FIG. 8. Construction of the distance function in 2D using the new method as given by Eq. (22), (23) with
the initial condition given by (18). We see that with the new method the interface barely moves. In this figure we
have plotted the zero level set ofφ for the following number of iterations,NI = 0, 160, 320, 480, 640, 800. The
domain isÄ = [−5, 5]× [−5, 5] and we take1t = 0.51x,1x = 10/16.

whereD(xi, j) is a very accurate approximation of the exact signed distance function which
is computed as

D(xi, j) = min
1≤p≤N6

|xi, j − xp|sgn(φ0(xi, j)),

wherexp is a point that is exactly on the interface. There areN6 such points. For the ellipse
we usexp = (xp, yp), where

xp = Acos(2πp/N6) and yp = B sin(2πp/N6).

To estimate how much the interface moves we compute the following integral:

E6 =
∫
6

|φ(x, t)| ds. (26)

The discrete form is

E6 = 1

2

Nσ∑
p=1

(|φ̃(xp, t)| + |φ̃(xp+1, t)|)|xp+1− xp|, (27)

wherexp is given above and̃φ(xp, t) is a third-order interpolation ofφ atxp.
The results are summarized in Figs. 10 and 11, where the log plot of the error is shown

as a function of time for the new algorithm (solid line) and for the old algorithm (dashed
line). The computation has been performed using 50× 50, 100× 100, and 200× 200 grid
points for the new algorithm and 200× 200 for the old one. In the approximation ofD(xi j)

FIG. 9. The results of applying the new method for the initial conditions given by (24). The domain is
Ä = [−5, 5]× [−5, 5] and we are using a 200× 200 grid1t = 0.51x. The number of iterations is 0, 10, 25, 50
starting from the top left and finishing in the lower right. The contours run from−1 to 1 and are spaced by 0.2.

FIG. 10. The L1 error between the numerically computed distance function and the exact distance function
(Eq. (25)) is plotted as a function of time for the new method forN = 50, 100, 200 (solid lines) and for the old
method withN = 200 (dotted line). These errors are for the same initial condition as used in Fig. 9.

62

COMPUTING DISTANCE FUNCTIONS 63

FIG. 11. The L1 error between the zero level set ofφ0 andφ(x, t) (defined by (27)) is plotted as a function
of time for the new method forN = 50, 100, 200 (solid lines) and for the old method withN = 200 (dotted line).
These errors are for the same initial condition as used in Fig. 9.

we usedN6 = 2000 points, and we checked that by usingN6 = 4000 we obtain the same
value of the error (within 0.2%). Notice that the new method is first order accurate (as
expected) and that the error approaches very quickly a stationary value, while the classical
algorithm produces a result that degrades with time.

Figure 11 shows that the error in the position of the zero level decreases by a factor
of 4 when the mesh grid size1x is halved. This means that the position of the interface
is preserved to second-order accuracy. It is not surprising that a first-order upwind gives
second-order accuracy, since the error within a fixed number of grid points from the interface
is proportional to the local truncation error, which is second order in1x. Furthermore, this
property is essential for the construction of a consistent first-order scheme that makes use
of the reconstruction of the distance function at every time step as an intermediate stage of
the computation, provided time step and grid size are of the same order of magnitude.

5. HIGH-ORDER SCHEMES

It is possible to construct high-order versions of the present scheme. In this section we
consider a second-order scheme, which is based on second-order formulas for the evaluation
of the derivatives. The second-order scheme in 1D is still given by Eqs. (5)–(6), but now
Eqs. (7 and 8) are replaced with a second-order approximation of space derivatives. Far
from the interface, the one-sided derivatives are obtained by the same scheme used in [10,
appendix B]. Here we report the scheme for completeness. Given five points of the stencil
around pointxi , (xp(k), f p(k), k = −2, . . . ,2), the left and right derivativesa andb are
given as follows. First compute the table of divided differences,

8[k, k+ 1] = f p(k+ 1)− f p(k)

xp(k+ 1)− xp(k)
, k = −2, . . . ,1,

8[k, k+ 2] = 8[k+ 1, k+ 2]−8[k, k+ 1]

xp(k+ 2)− xp(k)
, k = −2, . . . ,0.

64 RUSSO AND SMEREKA

Then computea andb as

c− = MM (8[−2, 0],8[−1, 1]), c+ = MM (8[−1, 1],8[0, 2]),

a ≡ D−x φi = 8[−1, 0]+ c−(xp(0)− xp(−1)),

b ≡ D+x φi = 8[0, 1]+ c+(xp(0)− xp(1)),

where MM is the minmod function defined as

MM (α, β) =

α if |α| ≤ |β| and αβ > 0

β if |α| > |β| and αβ > 0

0 if αβ ≤ 0.

The points of the stencil are chosen as follows. If pointxi is not close to the zero level set,
then

xp(k) = xi+k, f p(k) = φi+k, k = −2, . . . ,2.

If point xi is within one grid cell from the interface, then the stencil will include the
intersection of the function with the axis (see Fig. 12). In most cases, the point of intersection
can be efficiently computed by fitting a third-order polynomialx = x(φ) through the grid
points near the zero (marked by a circle).

The extension of such a second-order scheme to two dimensions is straightforward. Next
we show the numerical results obtained with the second-order scheme in two dimensions.

We perform the same test case used for the first-order scheme, with the initial condition
given by Eq. (24). For the computation of the “exact” signed distanceD we usedN6 = 4000
points.

FIG. 12. Use of the stencil for the approximation of left and right derivatives at pointxi . The vector xp is
given byxp = (xi−1, xA, xi , xi+1, xi+2). Point A is obtained constructing a third order polynomialx = x(φ) that
fits the circled points.

COMPUTING DISTANCE FUNCTIONS 65

FIG. 13. Second-order method: TheL1 error between the numerically computed distance function and the
exact distance function (Eq. (25)) is plotted as a function of time forN = 50, 100, 200. These errors are for the
same initial condition as used in Fig. 9.

In Fig. 13 we reproduce theL1 norm of the error obtained with the second-order scheme.
It is evident that the scheme provides a second-order-accurate evaluation of the distance
function in the whole domain.

In Fig. 14 we reproduce the error in the evaluation of the position of the level set. The
scheme maintains the position of the level set with third-order accuracy.

As a final remark observe that if one is interested in a second-order-accurate evaluation
of the distance function, it is not necessary to reconstruct the space derivatives near the
interface with the accurate procedure outlined above. It is sufficient to use the first-order
approximation of the derivatives near the interface, according to Eqs. (12) and (13) in 1D
and Eqs. (22) and (23) in 2D, and the second-order ENO scheme for the propagation of the

FIG. 14. The L1 error between the zero level set ofφ0 andφ(x, t) (defined by (27)) is plotted as a function
of time for the second-order method forN = 50, 100, 200. These errors are for the same initial condition as used
in Fig. 9.

66 RUSSO AND SMEREKA

FIG. 15. Second-order method with linear subcell fix near the zero level set. TheL1 error between the
numerically computed distance function and the exact distance function (Eq. (25)) is plotted as a function of time
for N = 50, 100, 200. These errors are for the same initial condition as used in Fig. 9.

distance function for all other points not adjacent to the interface. Figure 15 reproduces the
L1 norm of the error obtained with this intermediate scheme. It is evident that the distance
is computed with second order accuracy.

6. FINAL REMARKS

Because of its simplicity, accuracy, and efficiency, we believe that the present scheme
can be effectively used as a tool for the computation of a signed distance function, either for
problems where this function is required or as an intermediate step in level set calculations.
Because of its accuracy and efficiency, the scheme can be used at each time step without
affecting the overall accuracy or efficiency of level-set-based methods.

With regard to the efficiency of the scheme, we observe that if the scheme is used as
an intermediate step for the construction of the distance function near the zero level set in
a narrow band level set method, then its complexity is onlyO(N), whereN is the total
number of grid points. This is true because the number of time steps for which the equation
must be solved is a fixed number, independent of the size of the problem, and therefore the
number of operations is proportional to the number of the unknowns.

On the other hand, if one wants to use this method for the computation of the distance
function at all points of the computational domain, then the complexity of the scheme
(for the simple geometry illustrated in Fig. 1) would beO(N3/2) for two-dimensional
computation andO(N4/3) for three-dimensional computation. In this case the complexity
of the algorithm would be higher than the complexity of the fast marching method. It
is conceivable to imagine a more sophisticated variant of the method, in which only the
values of the level set far from a front moving with speed one will be updated. In this
way the scheme would be closer in spirit to the time marching method, and it would
possibly be competitive with it. Such variant is, however, far beyond the scope of the present
paper.

COMPUTING DISTANCE FUNCTIONS 67

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation through a Mathematical Sciences Career
grant (Grant DMS-9625190) and by DARPA and ONR through the Virtual Integrated Prototyping (VIP III)
initiative.

REFERENCES

1. D. L. Chopp, Computing minimal surfaces via level set curvature flow,J. Comput. Phys.106, 77 (1993).

2. M. Sussman, P. Smereka, and S. Osher, A level set method for computing solutions to incompressible two
phase flow,J. Comput. Phys.119, 146 (1994).

3. M. Sussman and P. Smereka, Axisymmetric free boundary problems,J. Fluid Mech.341, 269 (1997).

4. S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan problems,
J. Comput. Phys.135, 8 (1997)

5. B. Merriman, J. Bence, and S. Osher, Motion of multiple junctions: A level set approach,J.Comput. Phys.
112, 334 (1994).

6. D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang,A PDE Based Fast Local Level Set Method, UCLA-
CAM Report 98-25 (1998).

7. D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces,J.Comput. Phys.118,
269 (1995).

8. J. Strain, Fast tree-based redistancing for level set computations,J. Comput. Phys.152, 664 (1999).

9. J. Strain, Tree methods for moving interfaces,J. Comput. Phys.151, 616 (1999).

10. M. Sussman and E. Fatemi, An efficient, interface-preserving level set redistancing algorithm and its appli-
cation to interfacial incompressible fluid flow,SIAM J. Sci. Comput.20, 1165 (1999).

11. J. A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and
Materials Science (Cambridge Univ. Press, Cambridge, UK, 1996).

	1. INTRODUCTION
	FIG. 1.

	2. THE PROBLEM
	FIG. 2.
	FIG. 3.

	3. THE SUBCELL FIX
	FIG. 4.
	FIG. 5.
	FIG. 6.

	4. 2D RESULTS
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.

	5. HIGH-ORDER SCHEMES
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.

	6. FINAL REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

